If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2-150y=60
We move all terms to the left:
2y^2-150y-(60)=0
a = 2; b = -150; c = -60;
Δ = b2-4ac
Δ = -1502-4·2·(-60)
Δ = 22980
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{22980}=\sqrt{4*5745}=\sqrt{4}*\sqrt{5745}=2\sqrt{5745}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-150)-2\sqrt{5745}}{2*2}=\frac{150-2\sqrt{5745}}{4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-150)+2\sqrt{5745}}{2*2}=\frac{150+2\sqrt{5745}}{4} $
| 26=3x+2x−9 | | 3=6x+x+3 | | -3(4x+6)+6(3x-2)=x | | 9-x/4=x/5-9 | | 4x-12=-4x-124 | | 3.5-a=12.7 | | 6(x)=5x-2 | | (x/6)=14 | | 41-v=228 | | 2a+5a+4=-24 | | 10x+10=5x+10 | | x+60=45 | | x+6+x+6=3x-3 | | x-45=115 | | 2=4.2/k | | (p/120-3=-5 | | 3/5(x4/3)=1.04 | | 4/3w-12=1/3w | | A(t)=250-10t | | 8(x-5)-2x=3(2x+10)-60 | | 4/3w-12=1/3 | | 2(x-)/5=2(x+1)/7 | | 1/29b-30=5/2 | | 55+4x+7x-2=180 | | 9x+3+11x-17=186 | | 18+z=0 | | 8000=1/4x^2-4x+8006 | | 16=0.5r-8=16 | | 2(-5+6r)+5=9-2r | | 2.66=12x | | 3x=4x-130 | | (4x-29)=180 |