If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2+3y-65=0
a = 2; b = 3; c = -65;
Δ = b2-4ac
Δ = 32-4·2·(-65)
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-23}{2*2}=\frac{-26}{4} =-6+1/2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+23}{2*2}=\frac{20}{4} =5 $
| 800÷2x=40 | | 4/3(-9x+12)-x=-16x-9 | | 4/3(-9x+12)-x=16x-9 | | 20x+-10x=5 | | 10x+4=8x+34 | | 15x^2+-3x+-12=0 | | 6x+4=22−3x | | -(4x+3)-x=12 | | 150x=25 | | 52x+128=180 | | -5k+10=-2(k+7) | | –5+2d=–3 | | 97=5w+17 | | 6-3+4x+1=9x+9 | | 8x-45=2x+15 | | Y+3+12=x-3+15 | | 10=r=25 | | ((m-10)/3)-((4m-3)/5)=1 | | 3(3x+5)-4x= | | 10(x-+1)=5(2x+2) | | 3(8z+5)=-17-7z | | (m-10)/3-(4m-3)/5=1 | | 150000+18x=500000+13x | | -23-6w=5-10w | | 10x-20=5x+2 | | (x+1)(x+5)=16 | | 7−5z=–6z | | f-4=64+26 | | 4=x/4-15 | | 3-4a=-3(2a-3) | | (7/x)=(-4/3x)-8 | | 7(x+7)+9=7x+2 |