If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y+2.11/8y=190
We move all terms to the left:
2y+2.11/8y-(190)=0
Domain of the equation: 8y!=0We multiply all the terms by the denominator
y!=0/8
y!=0
y∈R
2y*8y-190*8y+2.11=0
Wy multiply elements
16y^2-1520y+2.11=0
a = 16; b = -1520; c = +2.11;
Δ = b2-4ac
Δ = -15202-4·16·2.11
Δ = 2310264.96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1520)-\sqrt{2310264.96}}{2*16}=\frac{1520-\sqrt{2310264.96}}{32} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1520)+\sqrt{2310264.96}}{2*16}=\frac{1520+\sqrt{2310264.96}}{32} $
| x+26-8x=4(2-x | | 2y+2.11/8y=190,y=40 | | 9x−8=37 | | (12x-9)-(7x+3)=2(6x-1) | | x+19=-(6x+4) | | 15-8(2a+2a)=16a-17 | | e+8=(-28)-3e | | -1/5x=-6 | | 3-3(2m-3)=-12 | | -a=-5/6 | | (7x+9)^2+15=−20 | | (7y+9)^2+15=−20 | | 100x^2−64=0 | | 100t^2−64=0 | | 100t2−64=0 | | 5/9x=-15/8 | | 9x-32=42 | | 21/9=84/t | | (4x+1)(x-3)=4x2-11x-3 | | (4n+25)+(2n+36)=180 | | (x+1)^2=x^2+6 | | 5/9x+2=3/8 | | 5(9r)-2(1-r)=1 | | -3=7y(2y-7) | | 16x^2+32x-128=0 | | x6+4=15x6+4=15 | | 5/3=d/10 | | 4w^2-12=0 | | 7h(11-h)=-5 | | 5(u+5)=-3u+9 | | 1/4x-1/6=1/3 | | 5(u+5)=3u+9 |