2y(y+15y)=180

Simple and best practice solution for 2y(y+15y)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2y(y+15y)=180 equation:



2y(y+15y)=180
We move all terms to the left:
2y(y+15y)-(180)=0
We add all the numbers together, and all the variables
2y(+16y)-180=0
We multiply parentheses
32y^2-180=0
a = 32; b = 0; c = -180;
Δ = b2-4ac
Δ = 02-4·32·(-180)
Δ = 23040
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{23040}=\sqrt{2304*10}=\sqrt{2304}*\sqrt{10}=48\sqrt{10}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-48\sqrt{10}}{2*32}=\frac{0-48\sqrt{10}}{64} =-\frac{48\sqrt{10}}{64} =-\frac{3\sqrt{10}}{4} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+48\sqrt{10}}{2*32}=\frac{0+48\sqrt{10}}{64} =\frac{48\sqrt{10}}{64} =\frac{3\sqrt{10}}{4} $

See similar equations:

| x+22=8x+4 | | 2(6x-15)+x+x=96 | | 1/2(18x+10)-2=-1/3(6x-21) | | 2n/7=80 | | 2x+36=20x | | 11x/10=0 | | x=(180-x)6 | | 4(x/8-2)=1/4(2x-4) | | 2x+36=2x | | -11t=14-6t | | 5+1(x+9)=25 | | x-3=3+6x | | 7m−13=43 | | z+12/23=-6/23 | | −3/4(x−3)−5=1/8(x−1) | | 7=6v+34+5v | | x=(90-X)-24 | | |3x-1|=|2x+4| | | -3x−8=-2 | | 201-v=78 | | 6x-15+x=96 | | 9v+9-3v=6v+6-8 | | 278=78-u | | 0.15(x+500)=210 | | *+2x-4=6+2(x-1) | | 10((12y-47)/10)=12y-32 | | 3m-22+3m=60-2m-10 | | -5u+2(u+6)=18 | | 8+9a=4a+6 | | -3x+42=15 | | 3x+2+3x+2=5x-4 | | 0.25(6x+1)=x+1.25 |

Equations solver categories