If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2=-8x+23
We move all terms to the left:
2x^2-(-8x+23)=0
We get rid of parentheses
2x^2+8x-23=0
a = 2; b = 8; c = -23;
Δ = b2-4ac
Δ = 82-4·2·(-23)
Δ = 248
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{248}=\sqrt{4*62}=\sqrt{4}*\sqrt{62}=2\sqrt{62}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{62}}{2*2}=\frac{-8-2\sqrt{62}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{62}}{2*2}=\frac{-8+2\sqrt{62}}{4} $
| 24)2x2=-8x+23 | | 70/x=0.2 | | 14m-5=37 | | 14m-5=42 | | 16/h=2 | | O.07x=-21 | | 7x+2x+10=180° | | 5h+7=42 | | x-5/8=-5 | | x–13=–19 | | 3x√-5x+10=0 | | Y²=8x | | Y*8.4+y=10.7 | | 13–x2=15 | | 2(2x)+2x=96 | | 6a2=4a+32 | | 6a2=4a+ | | 60=–6(s–5) | | 4x2-119=11x | | 2=–q–104 | | 1800=2000-2.5x | | 3(s+10)=33 | | 5+c3=4 | | 25-x/2=9 | | 2r=–2 | | (x+1)+(x+2)+(x+3)+(x+4)=160 | | 8=2(w+1) | | 5x+6=10x+5 | | x(8.5-2x)(11-2x)=0 | | 2/5x+4=1/5×+8 | | 7z+5=2z-15 | | -5+2u=-4u+25 |