If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-9x=35
We move all terms to the left:
2x^2-9x-(35)=0
a = 2; b = -9; c = -35;
Δ = b2-4ac
Δ = -92-4·2·(-35)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-19}{2*2}=\frac{-10}{4} =-2+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+19}{2*2}=\frac{28}{4} =7 $
| 2(4m–3)+2m=-(4m–20) | | 7d+9=30+10d | | -1+2(5n+7)=-35+4n | | 2x=(5x+21) | | -14=-5n+7n | | 2(r-2)/4-8=50 | | (2x-4)(4x+10)=9x-9 | | 9+5x=4x-2x | | 1=3r−11 | | 1-0.8(x-12)=0.2(6x-12) | | 3.1+10m=6.72 | | 9y+2=5y-7 | | -6=m-6-m | | 10/11a=10 | | 18-2t+6t=30 | | 6(x–7)=4(x–7) | | -6(4x+3)=5x+39 | | 8y+4=6y-16 | | -1+2(5n=7)=-35+4n | | 4r-11=11. | | -9=d/20 | | 3.2+10m=7.68 | | t=3(1-t)^2-2(1-t)+9 | | 2(x+7)-15=2x-1 | | 3(1+4r)+7r=3(1-8r) | | -11+n=-23 | | 5c+120-10c=30 | | -3=-9h+4-7 | | 3m-11=3m-4 | | 16=-13+x | | b+(-20)=-33 | | 3x–8=49 |