If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-8x-12=0
a = 2; b = -8; c = -12;
Δ = b2-4ac
Δ = -82-4·2·(-12)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{10}}{2*2}=\frac{8-4\sqrt{10}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{10}}{2*2}=\frac{8+4\sqrt{10}}{4} $
| X2+0.44x-1.76=0 | | X+7x=-25.4 | | 9a-5=12 | | H=-16t^2+352t | | 4x+(2x-60)=180 | | (1,-5)m=-2 | | H=6+50t-16t^ | | (2/3)^4x+2=(27/8)^x | | 3x-7-2/8(9x-6)=15 | | 11x–6=–17 | | .75=30/x | | 6x+7-2x=7 | | 49x^2-4x=0 | | 5=r-3≥25 | | x+66=(90-x) | | X=6+-0.8y | | -9×-3y=81 | | 9^(x-(1/2))=5^(2x-1) | | (6x-1)(5x+2)=0 | | 180+46=x(90+46) | | x2+6x=3 | | 8y+6(3y+7)=0 | | 6x-11=155 | | x7(x−3)=5x−1 | | 2x+9=85 | | 38400-125m+150m=40600-175m | | x2+6x=3. | | 4.75x+0.75=3.25x+0.50 | | 0.5y+4÷1.2y+8=5÷3 | | 15p^2-54p-24=0 | | 3^x=4.2. | | x2=0,81 |