If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-3x-7=0
a = 2; b = -3; c = -7;
Δ = b2-4ac
Δ = -32-4·2·(-7)
Δ = 65
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-\sqrt{65}}{2*2}=\frac{3-\sqrt{65}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+\sqrt{65}}{2*2}=\frac{3+\sqrt{65}}{4} $
| 7y-6=8+6 | | -1=-8/3(2)+b | | x*x+x=42 | | (8x+3)=7x | | -1=-8/3(-1)+b | | y=2.5(2.0 | | 2+1/3r=1+11/4 | | 12c-27=117 | | 3=-8/3(1/2)+b | | m/5+16=44 | | (v-7)^2=2v^2+4v+70 | | 12=3k-9 | | (7x−3)2-50=0 | | 5x-8=4x+26 | | 5x²-21x+4=0 | | 7x+69=223 | | (v-7)(v-7)=2v^2+4v+70 | | 5x-8=4x=26 | | 5/m+16=44 | | -3w-9=9(w+7) | | h/9-12=4 | | 51+14x=205 | | 2/4(2d+3)=3/5(3d-5) | | (7x−3)2=50 | | .6x+9.1=7.6 | | -4x-4(5x+2)=-35+3x | | 2(w+3)=7w+16 | | -7+2x=13 | | y+12-63=180 | | 7x-41=15 | | 2/4(2d+3=3/5(3d-5) | | -2÷3x+5=20-x |