If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+7x-4=0
a = 2; b = 7; c = -4;
Δ = b2-4ac
Δ = 72-4·2·(-4)
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-9}{2*2}=\frac{-16}{4} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+9}{2*2}=\frac{2}{4} =1/2 $
| 7(x–1)=2(2x+4) | | 2(y-6)=3(y-4)-y | | x/2+x/7-15=x | | (2x-1)^2-16=0 | | Y=x+74X=Y-1 | | x=√(8x-15) | | (2x-1)-16=0 | | 2x+4=−24 | | 3(x-1)+1=6-(x-4) | | 4-y=21 | | 4+6(-m)=4 | | 15,25y^2-7=0 | | g=-6.25+0.25A | | -3(8+3h)=5h+4 | | 81=5w+16 | | 7y^2-7=0 | | X2+y2=25 | | 1-(1/x^2)=2x-5 | | F(5)=8x+3 | | 2x(x-13)=26 | | 10(s-4)=-81 | | 10(s-4)=81 | | X-12/y=18 | | x-2/10=8/5 | | 2x²+6x-56=0 | | 73(q−7)=27 | | 23b+5=20-b | | 10x+15-17=42 | | -2/5=-x/45 | | x-3/20=1/2 | | 5=1/4(q^2) | | 2(x-5/2)^2-15/2=0 |