If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+5x=11
We move all terms to the left:
2x^2+5x-(11)=0
a = 2; b = 5; c = -11;
Δ = b2-4ac
Δ = 52-4·2·(-11)
Δ = 113
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{113}}{2*2}=\frac{-5-\sqrt{113}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{113}}{2*2}=\frac{-5+\sqrt{113}}{4} $
| 95=k+10 | | 19+9x=2(3x-6) | | 2t=8=t | | 2x-90=x-5 | | w/12=108 | | d+2=98 | | 8+2(2x-3)=6-(x-4) | | 6=12(2x-3) | | X-15=12=x | | 2(x-4)+3=5 | | 19+9x=6x-38 | | X/3—3=x/9+3 | | 10x-27=2x | | 5+b/8=8 | | 40=(3x10) | | -2=1/2x-10 | | 11x+20=4x^2+20x+25 | | 3x+9=1/2 | | 3(4x-6-2x+1=3-(3x-6) | | 11x+20=4x^2 | | y/12+5=10 | | 19+9x=6-18x | | 56÷b=12 | | n/18=-17/9 | | n/18=17/9 | | 4y-64=180 | | g-18/1/3=25 | | 4x^2+28x=−53 | | t÷4=8 | | -16(x+6)=4(x+36) | | 3x-(5x-4)=-14-x | | 19+9x=18x-3 |