If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+5x-200=0
a = 2; b = 5; c = -200;
Δ = b2-4ac
Δ = 52-4·2·(-200)
Δ = 1625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1625}=\sqrt{25*65}=\sqrt{25}*\sqrt{65}=5\sqrt{65}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5\sqrt{65}}{2*2}=\frac{-5-5\sqrt{65}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5\sqrt{65}}{2*2}=\frac{-5+5\sqrt{65}}{4} $
| X=9,y= | | 5(y-3.2)=60 | | -2q-63=27 | | 40-2x=5×3x | | y+4=-56 | | 68/2+7a=98 | | X=3,y | | -6=2(p-3)+(p+6) | | -2q63=47 | | 17.3=3p+2 | | 2n÷8=-6 | | -1(b+4)=12+3b | | 17n+5n-15n+2n+2=20 | | 4(-8x+5)=33x-26 | | 67=11a+1 | | 3x-3x+3x-x+3x=15 | | 12=w÷4 | | 6x=-1x-34 | | 5(3-4x)=2(5-6x) | | 15k+14k+-3k-18k=-16 | | X2+2.5x-100=0 | | -78+6x=-78 | | 45=x-6x | | 40=44x | | 42/3-a=-16 | | -5k+14k+-k+4=-12 | | -1/4(z-1/6)=4/5(z-5) | | 43/3-a=-16 | | 5x+14=3x+26 | | 13+18a=517 | | Y+.15y=3.45 | | 19a-236=239 |