If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+5=45
We move all terms to the left:
2x^2+5-(45)=0
We add all the numbers together, and all the variables
2x^2-40=0
a = 2; b = 0; c = -40;
Δ = b2-4ac
Δ = 02-4·2·(-40)
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{5}}{2*2}=\frac{0-8\sqrt{5}}{4} =-\frac{8\sqrt{5}}{4} =-2\sqrt{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{5}}{2*2}=\frac{0+8\sqrt{5}}{4} =\frac{8\sqrt{5}}{4} =2\sqrt{5} $
| X+5(2x10)=180 | | 9x-1+8=-40 | | 13=2u-7 | | 5x/24=30.25 | | -11+16+x-19=102 | | /2x+5=x+7 | | 2t-2+8=2(t-1) | | y=$4+1 | | 2x+4=-3x+28 | | 28=19-7h+4h | | -48=(-6)(w+4) | | 3+1.50b=30 | | 8x-3(2x-1)=4 | | 3^(x-1)=9^(2x) | | 400 + 75d = 1000 − 25d | | Y-7=6(x-6) | | 3z=2z−15 | | w+9/7=2 | | 9q2–49=0 | | x+5(2x10=180 | | 9x+8=6x+25 | | 11+x+x-19=16 | | 3b+1.50=30 | | 15x+15=4x+59 | | 13x+31=57 | | 3^x-1=9^2x | | (-u/9)=44 | | x-9/5=-8 | | x^2-2.4x-3.6=0 | | 8+-b=–3b−2b+10 | | p2=49 | | 6=4+-2x |