If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+4x=10x
We move all terms to the left:
2x^2+4x-(10x)=0
We add all the numbers together, and all the variables
2x^2-6x=0
a = 2; b = -6; c = 0;
Δ = b2-4ac
Δ = -62-4·2·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6}{2*2}=\frac{0}{4} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6}{2*2}=\frac{12}{4} =3 $
| −1=x−1+4x | | x+14=-36 | | p7− –61=71 | | 1,2+5x=4,7 | | 0.7x-3=0.2x+8 | | -6e-5+11=12 | | 16+2=-2(2x-9) | | -x/13=-11 | | a/5=-18 | | 2x+18-x=33 | | 3(x-1)+x=+4(x+2) | | -(w-1)=2(w+5) | | 5x-2+-7=-4 | | 11y-32=25 | | 2(-3-8a)+8(1-7a)=-70 | | −4x+6=−2x−2 | | 3(x-1)+x=+4(x=2) | | 5x-2+7=4 | | 7x2+3x=-11x | | s/4+16=18 | | q-29/8=6 | | 10f−1=5f−7 | | -90=-6(1+7p) | | 2/7=4/n+6 | | -3+12a-11a=-4 | | 6*x=150 | | 9(x-5)=55-x | | 336=-24x | | -5=-3m+2m | | 5(2x+8)=-18+38 | | 2x+7x+4x=180 | | -3(6x-8)=-48 |