If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+4x-5=0
a = 2; b = 4; c = -5;
Δ = b2-4ac
Δ = 42-4·2·(-5)
Δ = 56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{56}=\sqrt{4*14}=\sqrt{4}*\sqrt{14}=2\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{14}}{2*2}=\frac{-4-2\sqrt{14}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{14}}{2*2}=\frac{-4+2\sqrt{14}}{4} $
| b+5=3b-1 | | 2d^2−7d+4=0 | | (3.2^2x+1)-(5.2^x+2)+16=0 | | 5/6x-2x=5/3-4/3 | | 2x^2-3x-9=5 | | 15=(3+n) | | 6x^2+26x-26=0 | | 4x^2+1x+5=0 | | 19=3w+7(w+7) | | 8(y-8)-2y=-34 | | 7.2h=57.76 | | 6x-7÷4=20 | | 7x+6(x+2)=77 | | (5y+4)+(−2y+6)= | | |3x+9|=15 | | -3=-x/2- | | 5(v+3)+8v=-11 | | -9/8=-3y | | 2x+3(x-2)=6-4(2x+3) | | 3/j=4.5 | | x=2.3,5x | | -4u/9=-24 | | 3-5x=-25 | | 5=2.2/w | | 3/2v=-6 | | 3x+5(4x-11)=129 | | 5=w/2.2 | | -16/3=-8y | | 4x+7(2x-10)=146 | | 16-8a+a^2=0 | | 1/9-6x=-6x+4/9 | | 4/9y-6=-2 |