If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+4x-30=0
a = 2; b = 4; c = -30;
Δ = b2-4ac
Δ = 42-4·2·(-30)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-16}{2*2}=\frac{-20}{4} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+16}{2*2}=\frac{12}{4} =3 $
| 4(1.06^5x+1)=11 | | -x2+4x-7=0 | | (3x/5)+(2x/3)=10 | | 9n-7=5=+5 | | 8t-(2t-18=-12 | | 8t-(2t18)=-12 | | 3x/5+2x/3=10 | | 0.5+4/1.2y+8=5/3 | | 356b×56=-832 | | 356b×56=-833 | | 2x-4x^2+7=0 | | 5r-2r=15 | | Y=2x2+20x+15 | | 7x-3=-4x+18 | | 240=x-x*20/100 | | 2x+7=3x+2=41 | | -0.3898=1E-05x+0.0042 | | 27^x-2=81 | | -4(v+2)=7v-19 | | 5v+46=-2(v-9) | | 81=5x-4 | | 7(v+4)=-4v-27 | | 2x^+8=0 | | 7-2(3-x)=12 | | 3x(x+4)=5(x-6)+32 | | n2+7=11 | | 5c+4=2(c-5 | | 4+2v=10v= | | F=9/5(k-237.15)+32 | | (4/3x)+25=35 | | -3x(x-4)+x=2x-12 | | 4/3x+25=35 |