If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+14x+10=0
a = 2; b = 14; c = +10;
Δ = b2-4ac
Δ = 142-4·2·10
Δ = 116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{116}=\sqrt{4*29}=\sqrt{4}*\sqrt{29}=2\sqrt{29}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{29}}{2*2}=\frac{-14-2\sqrt{29}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{29}}{2*2}=\frac{-14+2\sqrt{29}}{4} $
| 9x2-27x+14=0 | | 3^(x+2)-3^x=72 | | 3(5-h-2(h-2)=-1 | | (w-4)^2=2w^2-7w+14 | | (w-4)=2w^2-7w+14 | | (n-5)7+(n+3)6=22 | | (n-5)7=(n+3)6=22 | | n−5/6+n+3/7=11/21 | | 8×y=64 | | 2=46-3x | | -3.3m=11 | | 4(x+2)=-2(x-4) | | 7n-5=10n-7 | | x2−94=−x−4 | | X²+40x-150=0 | | (3x)(x)/2=24 | | (7+x)/5=18 | | (3x)(x)÷2=24 | | 2(3-c)+8=5c | | 3t-2-2t+3/3=2/3-t | | 1/2(4b-3)=-b | | 4+3x=2/5(6x-2) | | 12=14x+26 | | 11=8x+27 | | 8y-10=20+3y | | X/2+4=x/3+12 | | |2x+5|=-4 | | -31+x=-10 | | 3x4=15 | | 144=4(x-27) | | 3(2x-4)=5(x+3)+9 | | 7x²-63=0 |