If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+13x+11=0
a = 2; b = 13; c = +11;
Δ = b2-4ac
Δ = 132-4·2·11
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-9}{2*2}=\frac{-22}{4} =-5+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+9}{2*2}=\frac{-4}{4} =-1 $
| 223=7x+6(-7x-2) | | x2+13x+11=0 | | 3x-35=x+23 | | 6x-8=1x-18 | | 6y-78=y | | 2÷x+4x=9 | | 2x+5x-19=7x+2 | | 5(x+2)=-3x-6 | | -k-6=7k-22 | | X^-12x+20=0 | | 3x-10=4x-9 | | 30=-3(-2-2x) | | 4y-66=y | | 9c+12=39 | | 7p+3-3p-7+p=5p-4 | | x/2-11=24 | | 2x(2x-10)=180 | | -x^{2}-x+6=0 | | -5u+4+8u=3 | | 50x9=10x450 | | 18+3m=-12 | | -2x+8=-2(x-3)+2 | | -5x+2=-7x+6 | | Y=8x+5000 | | -24-160+64=n | | 3x+x-12=0 | | (4y-15)+7y+(4y-15)=180 | | 3.2n=-4n | | -15=+n=9 | | y=100+0.8y+215 | | 5q-7.35=23 | | 16x×9x=576 |