If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2+13x+11=0
We add all the numbers together, and all the variables
x^2+13x+11=0
a = 1; b = 13; c = +11;
Δ = b2-4ac
Δ = 132-4·1·11
Δ = 125
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{125}=\sqrt{25*5}=\sqrt{25}*\sqrt{5}=5\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-5\sqrt{5}}{2*1}=\frac{-13-5\sqrt{5}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+5\sqrt{5}}{2*1}=\frac{-13+5\sqrt{5}}{2} $
| 3x-35=x+23 | | 6x-8=1x-18 | | 6y-78=y | | 2÷x+4x=9 | | 2x+5x-19=7x+2 | | 5(x+2)=-3x-6 | | -k-6=7k-22 | | X^-12x+20=0 | | 3x-10=4x-9 | | 30=-3(-2-2x) | | 4y-66=y | | 9c+12=39 | | 7p+3-3p-7+p=5p-4 | | x/2-11=24 | | 2x(2x-10)=180 | | -x^{2}-x+6=0 | | -5u+4+8u=3 | | 50x9=10x450 | | 18+3m=-12 | | -2x+8=-2(x-3)+2 | | -5x+2=-7x+6 | | Y=8x+5000 | | -24-160+64=n | | 3x+x-12=0 | | (4y-15)+7y+(4y-15)=180 | | 3.2n=-4n | | -15=+n=9 | | y=100+0.8y+215 | | 5q-7.35=23 | | 16x×9x=576 | | 11/7=v/5 | | 9x+184=76+156 |