If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+11x-138=0
a = 2; b = 11; c = -138;
Δ = b2-4ac
Δ = 112-4·2·(-138)
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1225}=35$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-35}{2*2}=\frac{-46}{4} =-11+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+35}{2*2}=\frac{24}{4} =6 $
| -6x+16=12-8x | | 5-y=1+y | | 2x-4=3-x | | 1=-4x+5x | | 129-x=14 | | 4x-17=19-4x | | 8x=7x+7x | | 3(4w+7)/2=5 | | 26x-188-2x=150+19x+62 | | 0.5=-x-x | | 11-6b=-1+6b | | 6x+13=2x-x+3 | | x=2-6 | | -3x+93=-2x+11 | | b+19=310 | | 3(p-7)=594 | | (2x+3)x(5x-4)=5 | | (k/3)=5 | | -w-1=-3w+43 | | 20-6r=3r-1132 | | 2(3r+1)=62 | | 4p-3=149 | | 12+1-4x=61 | | -(c+4)=1 | | (2x+14)+(3x+2)=(6x-9) | | 2(5-b)=-272 | | 12+1-4x=6 | | 2,14x+6,28=2,64x+9,78 | | 5a-(10a-8)=14 | | -x-10=-2x+22 | | 3f+9=4f-47 | | 7x-4(x+4)=4(3-x) |