If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x-5-18x=(1/2)(22x+10)
We move all terms to the left:
2x-5-18x-((1/2)(22x+10))=0
Domain of the equation: 2)(22x+10))!=0We add all the numbers together, and all the variables
x∈R
2x-18x-((+1/2)(22x+10))-5=0
We add all the numbers together, and all the variables
-16x-((+1/2)(22x+10))-5=0
We multiply parentheses ..
-((+22x^2+1/2*10))-16x-5=0
We multiply all the terms by the denominator
-((+22x^2+1-16x*2*10))-5*2*10))=0
We calculate terms in parentheses: -((+22x^2+1-16x*2*10)), so:We add all the numbers together, and all the variables
(+22x^2+1-16x*2*10)
We get rid of parentheses
22x^2-16x*2*10+1
Wy multiply elements
22x^2-320x*1+1
Wy multiply elements
22x^2-320x+1
Back to the equation:
-(22x^2-320x+1)
-(22x^2-320x+1)=0
We get rid of parentheses
-22x^2+320x-1=0
a = -22; b = 320; c = -1;
Δ = b2-4ac
Δ = 3202-4·(-22)·(-1)
Δ = 102312
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{102312}=\sqrt{1764*58}=\sqrt{1764}*\sqrt{58}=42\sqrt{58}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(320)-42\sqrt{58}}{2*-22}=\frac{-320-42\sqrt{58}}{-44} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(320)+42\sqrt{58}}{2*-22}=\frac{-320+42\sqrt{58}}{-44} $
| 1/3b+5=3/2b+1/3 | | 7134+d=10,000 | | 8-3+3x=5 | | -6-(9r+6)=42 | | 0,75x+6,6675=x | | 12x-28=48-4x | | 326=2.w+2(2w+58) | | 2w-5-18w=(-1/2)(22w+10) | | 3x+5=2x–1 | | 6a+12=2a-15 | | 4b−1=-13b= | | 19+h=6 | | 2y=13y-9y | | 52=2.w+2(4w-9) | | (a-1/3)=3/4 | | 4b−1=-13 | | −4(n−6)=12 | | 16x-1=14x+1 | | 5/9(9d–27)–14=6 | | -2+4x=2x+22 | | 2(m+9)=24m= | | -4-6n=-5n+1 | | 4k=-6(5-1k) | | 7(7)=b | | 3(1-8m)-5=-74 | | (x+1)(x+8)=(x-3)(x+2) | | 2x-5=74 | | 6(5g+2)=20g | | 6/x=-15/17.5 | | 3(1+2x)=-9 | | i-6=28 | | 3n^2=12;-2 |