If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2w-5-18w=(-1/2)(22w+10)
We move all terms to the left:
2w-5-18w-((-1/2)(22w+10))=0
Domain of the equation: 2)(22w+10))!=0We add all the numbers together, and all the variables
w∈R
-16w-((-1/2)(22w+10))-5=0
We multiply parentheses ..
-((-22w^2-1/2*10))-16w-5=0
We multiply all the terms by the denominator
-((-22w^2-1-16w*2*10))-5*2*10))=0
We calculate terms in parentheses: -((-22w^2-1-16w*2*10)), so:We add all the numbers together, and all the variables
(-22w^2-1-16w*2*10)
We get rid of parentheses
-22w^2-16w*2*10-1
Wy multiply elements
-22w^2-320w*1-1
Wy multiply elements
-22w^2-320w-1
Back to the equation:
-(-22w^2-320w-1)
-(-22w^2-320w-1)=0
We get rid of parentheses
22w^2+320w+1=0
a = 22; b = 320; c = +1;
Δ = b2-4ac
Δ = 3202-4·22·1
Δ = 102312
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{102312}=\sqrt{1764*58}=\sqrt{1764}*\sqrt{58}=42\sqrt{58}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(320)-42\sqrt{58}}{2*22}=\frac{-320-42\sqrt{58}}{44} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(320)+42\sqrt{58}}{2*22}=\frac{-320+42\sqrt{58}}{44} $
| 3x+5=2x–1 | | 6a+12=2a-15 | | 4b−1=-13b= | | 19+h=6 | | 2y=13y-9y | | 52=2.w+2(4w-9) | | (a-1/3)=3/4 | | 4b−1=-13 | | −4(n−6)=12 | | 16x-1=14x+1 | | 5/9(9d–27)–14=6 | | -2+4x=2x+22 | | 2(m+9)=24m= | | -4-6n=-5n+1 | | 4k=-6(5-1k) | | 7(7)=b | | 3(1-8m)-5=-74 | | (x+1)(x+8)=(x-3)(x+2) | | 2x-5=74 | | 6(5g+2)=20g | | 6/x=-15/17.5 | | 3(1+2x)=-9 | | i-6=28 | | 3n^2=12;-2 | | (C+2)×(c=3)=14 | | x+36=1566 | | 5=8-3+3x | | -6n-(4-9n)=4(n-5) | | -4/3=-3/5x-5/4 | | -1-4(3+3x)=35 | | -25=5x-1 | | 2x-6-x=9 |