2x-3=3(2+x)(-3+x)

Simple and best practice solution for 2x-3=3(2+x)(-3+x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x-3=3(2+x)(-3+x) equation:



2x-3=3(2+x)(-3+x)
We move all terms to the left:
2x-3-(3(2+x)(-3+x))=0
We add all the numbers together, and all the variables
2x-(3(x+2)(x-3))-3=0
We multiply parentheses ..
-(3(+x^2-3x+2x-6))+2x-3=0
We calculate terms in parentheses: -(3(+x^2-3x+2x-6)), so:
3(+x^2-3x+2x-6)
We multiply parentheses
3x^2-9x+6x-18
We add all the numbers together, and all the variables
3x^2-3x-18
Back to the equation:
-(3x^2-3x-18)
We add all the numbers together, and all the variables
2x-(3x^2-3x-18)-3=0
We get rid of parentheses
-3x^2+2x+3x+18-3=0
We add all the numbers together, and all the variables
-3x^2+5x+15=0
a = -3; b = 5; c = +15;
Δ = b2-4ac
Δ = 52-4·(-3)·15
Δ = 205
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{205}}{2*-3}=\frac{-5-\sqrt{205}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{205}}{2*-3}=\frac{-5+\sqrt{205}}{-6} $

See similar equations:

| 6+4/5b=0+9/10b | | 7b-97=97-7b | | 4(q-8)=8q-20 | | x/2+x/4=x/8+x-6 | | 3,5-2x=2,05 | | -2(3w-3)-4=18 | | 10x5=12x-8 | | 4/3=5x | | 8(n-2)=(n+4)(n-4) | | -6/s=-3 | | -8(4k-3)+3k=-39-8k | | 5x/12=80 | | 3(5x+6)+5x=2(10x+9) | | X^2-6z-3=0 | | 3^y=81 | | 4=c+4/3 | | 3c+-15+7=-2 | | -4(x-5)^2-12=0 | | 2+7x=-5(x+3)-5x | | 96/(x-3)-11=1 | | 12/(x-1)-5=1 | | 3v-42=12 | | 9/(x+3)+1=4 | | 7-x=5-3 | | 5/4x-4/3x-1=8 | | y+3/3=2 | | 3/2(x-5)=-7 | | 5x-(5+2x)=4-4(x-3) | | x/10-8=4 | | z/7+6=2 | | 9/j=3 | | -3(6-4n=-38+8n |

Equations solver categories