6+4/5b=0+9/10b

Simple and best practice solution for 6+4/5b=0+9/10b equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6+4/5b=0+9/10b equation:



6+4/5b=0+9/10b
We move all terms to the left:
6+4/5b-(0+9/10b)=0
Domain of the equation: 5b!=0
b!=0/5
b!=0
b∈R
Domain of the equation: 10b)!=0
b!=0/1
b!=0
b∈R
We add all the numbers together, and all the variables
4/5b-(+9/10b)+6=0
We get rid of parentheses
4/5b-9/10b+6=0
We calculate fractions
40b/50b^2+(-45b)/50b^2+6=0
We multiply all the terms by the denominator
40b+(-45b)+6*50b^2=0
Wy multiply elements
300b^2+40b+(-45b)=0
We get rid of parentheses
300b^2+40b-45b=0
We add all the numbers together, and all the variables
300b^2-5b=0
a = 300; b = -5; c = 0;
Δ = b2-4ac
Δ = -52-4·300·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5}{2*300}=\frac{0}{600} =0 $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5}{2*300}=\frac{10}{600} =1/60 $

See similar equations:

| 7b-97=97-7b | | 4(q-8)=8q-20 | | x/2+x/4=x/8+x-6 | | 3,5-2x=2,05 | | -2(3w-3)-4=18 | | 10x5=12x-8 | | 4/3=5x | | 8(n-2)=(n+4)(n-4) | | -6/s=-3 | | -8(4k-3)+3k=-39-8k | | 5x/12=80 | | 3(5x+6)+5x=2(10x+9) | | X^2-6z-3=0 | | 3^y=81 | | 4=c+4/3 | | 3c+-15+7=-2 | | -4(x-5)^2-12=0 | | 2+7x=-5(x+3)-5x | | 96/(x-3)-11=1 | | 12/(x-1)-5=1 | | 3v-42=12 | | 9/(x+3)+1=4 | | 7-x=5-3 | | 5/4x-4/3x-1=8 | | y+3/3=2 | | 3/2(x-5)=-7 | | 5x-(5+2x)=4-4(x-3) | | x/10-8=4 | | z/7+6=2 | | 9/j=3 | | -3(6-4n=-38+8n | | 24/(x+1)=4 |

Equations solver categories