If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x-3=13/4x+10-1.25x
We move all terms to the left:
2x-3-(13/4x+10-1.25x)=0
Domain of the equation: 4x+10-1.25x)!=0We add all the numbers together, and all the variables
We move all terms containing x to the left, all other terms to the right
4x-1.25x)!=-10
x∈R
2x-(-1.25x+13/4x+10)-3=0
We get rid of parentheses
2x+1.25x-13/4x-10-3=0
We multiply all the terms by the denominator
2x*4x+(1.25x)*4x-10*4x-3*4x-13=0
We add all the numbers together, and all the variables
2x*4x+(+1.25x)*4x-10*4x-3*4x-13=0
We multiply parentheses
4x^2+2x*4x-10*4x-3*4x-13=0
Wy multiply elements
4x^2+8x^2-40x-12x-13=0
We add all the numbers together, and all the variables
12x^2-52x-13=0
a = 12; b = -52; c = -13;
Δ = b2-4ac
Δ = -522-4·12·(-13)
Δ = 3328
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3328}=\sqrt{256*13}=\sqrt{256}*\sqrt{13}=16\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-52)-16\sqrt{13}}{2*12}=\frac{52-16\sqrt{13}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-52)+16\sqrt{13}}{2*12}=\frac{52+16\sqrt{13}}{24} $
| 4(4w-3)=8(2w-2)+4 | | 2x-4+2x-11=13 | | 2r−r−1=11 | | 26x=3.50-8.50 | | -4(1y+-7)=28 | | 0=-4-3/5x | | 5x-7x-11=-2x+5x-11 | | (n)(n+8)=2900 | | 4+1.5m=6+1m | | -10z+8z−6=20 | | 3n=14+19 | | -3(-3y+2)=30 | | -(f+-14)=3 | | 76-w=184 | | 0=9d-2-(4-3d) | | 42-3x=2+× | | 1.50n+2.50=10.50 | | b/3=1/8=19 | | 2a-1=2a-1 | | -5a+(-10)=9=a | | 0.17-0.01(x+2)=-0,03(3-x) | | 1/5p=15/ | | 7(4x-9)+8=8x-5+8x | | -y+135=286 | | x/4+13/4=5/6 | | 3•2+t=3.60•2 | | -9-3(1+2z)=16 | | 3D+7=9(1/3d+2) | | -19j+14j−9=6 | | 7p+21+9=5(p-2)-3p | | 200=-y+274 | | 6=n/5-4 |