2x+32/3x+40=12/3x+10

Simple and best practice solution for 2x+32/3x+40=12/3x+10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x+32/3x+40=12/3x+10 equation:



2x+32/3x+40=12/3x+10
We move all terms to the left:
2x+32/3x+40-(12/3x+10)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 3x+10)!=0
x∈R
We get rid of parentheses
2x+32/3x-12/3x-10+40=0
We multiply all the terms by the denominator
2x*3x-10*3x+40*3x+32-12=0
We add all the numbers together, and all the variables
2x*3x-10*3x+40*3x+20=0
Wy multiply elements
6x^2-30x+120x+20=0
We add all the numbers together, and all the variables
6x^2+90x+20=0
a = 6; b = 90; c = +20;
Δ = b2-4ac
Δ = 902-4·6·20
Δ = 7620
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7620}=\sqrt{4*1905}=\sqrt{4}*\sqrt{1905}=2\sqrt{1905}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(90)-2\sqrt{1905}}{2*6}=\frac{-90-2\sqrt{1905}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(90)+2\sqrt{1905}}{2*6}=\frac{-90+2\sqrt{1905}}{12} $

See similar equations:

| 35x3=9 | | 30=5,2x | | w=13/4 | | 2(x-1)=3x-(x+4 | | 2m-40=46 | | 26=30+-24f | | 10+3x-2x=16 | | 6x–7=1+2(3x–4) | | -6+17=m-10 | | 4b-19+4=b+2b-2b | | 70*15=100*x | | 9(x+10°)-18°=3(2x+30°) | | -4x+7=-4+7 | | X+1+x+2+x=6 | | 8(x+4)=65=5 | | 4,000,000=4x60 | | -2=-3+x/4 | | y=(-1.75) | | -0.34x(-18.6)=6.324 | | -2=0.25714p | | 3(3s+4)=21= | | y/4y+8=2 | | 4x+3=19x+13-10x | | .9=45x | | (6x+14)+(3x+29)=100 | | 70x15=x | | 60+7x55=20x | | 60+42.95x=25+4.95x | | 5(2x+1)-4=0 | | 0.07(3t+5)=0.21(t+1)+0.14 | | 7x=4x-5 | | (6x+14)+(3x+29)=98 |

Equations solver categories