If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x+20+40+x2=180
We move all terms to the left:
2x+20+40+x2-(180)=0
We add all the numbers together, and all the variables
x^2+2x-120=0
a = 1; b = 2; c = -120;
Δ = b2-4ac
Δ = 22-4·1·(-120)
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-22}{2*1}=\frac{-24}{2} =-12 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+22}{2*1}=\frac{20}{2} =10 $
| 2/3(x-6)=28 | | 1/3*75+2/3*60=m | | 2/3a+3=11 | | 12n=7n+24 | | z^2+2z+10=) | | 5−3y=12−4y | | 4x^2+32x=11 | | 20y-y^2-3500=0 | | 11x+15=191 | | (2x+2)/4+4=24 | | −12+2t= −14−14 | | (13x+19)=(9x+7) | | 20x-x^2=3500 | | 8^t=6 | | -7=(-3-(-5x))/(2+3x) | | -5.6e+12.9=-1.3 | | 2x+3/7x+1=7/15 | | 7x+x=52 | | x+3x+(3x-3)=95 | | 6v–14=3v+5 | | -2q= | | 4=2+x/3 | | 20=d/4 | | 18+9x=4+7x | | 2x+4x+4=52 | | 56c+34=1112. | | x-19=x+69 | | 3c=c+9 | | r^2+18r-43=0 | | -(2x5)-1=2(x+1) | | 4x×x=1024 | | -5x-(6-x)=3x+3 |