If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x+13=7x^2
We move all terms to the left:
2x+13-(7x^2)=0
determiningTheFunctionDomain -7x^2+2x+13=0
a = -7; b = 2; c = +13;
Δ = b2-4ac
Δ = 22-4·(-7)·13
Δ = 368
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{368}=\sqrt{16*23}=\sqrt{16}*\sqrt{23}=4\sqrt{23}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-4\sqrt{23}}{2*-7}=\frac{-2-4\sqrt{23}}{-14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+4\sqrt{23}}{2*-7}=\frac{-2+4\sqrt{23}}{-14} $
| 4x=7x+30 | | 128^3x=8 | | 1.25y–20.5=0.5y–11.5 | | 15x–8=4x+47 | | 4y-3=-25 | | 14×3-5x=129-4x | | 39.91+0.50x=120 | | 0.50x+39.91=120 | | 16x^2+4x-156=0 | | c-24=19 | | 6x–4=2x+16 | | 7x-3=-6 | | (2m2-m-1)÷(m-1)=0 | | 40(x+2/10)=40(2/5+x-7/8) | | 8-1/t-7/t^2=0 | | c-26=28 | | 1/3(2x+5)=3/4(x-1)+5/4 | | 4x2+64=0 | | 1/3(2x+3)=3/4(x-1)+5/4 | | 15=x/3+4 | | 5.5x+6-4.5x=2 | | i/9-13=-11 | | 7^x=43 | | 2x^2-27x+37=0 | | 3(2x-21)-(4x-1)-5(1-x)-x=10 | | 2(x+6)/3=x-5= | | 5(5x-3)+4=-3 | | -4/5y=4= | | 3(-4)-y=10 | | 4z+1-z=1+z= | | 3^4x-1=27^3x | | 3(x-2)+11=-2(x+5) |