If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x+1/4x-19=180
We move all terms to the left:
2x+1/4x-19-(180)=0
Domain of the equation: 4x!=0We add all the numbers together, and all the variables
x!=0/4
x!=0
x∈R
2x+1/4x-199=0
We multiply all the terms by the denominator
2x*4x-199*4x+1=0
Wy multiply elements
8x^2-796x+1=0
a = 8; b = -796; c = +1;
Δ = b2-4ac
Δ = -7962-4·8·1
Δ = 633584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{633584}=\sqrt{16*39599}=\sqrt{16}*\sqrt{39599}=4\sqrt{39599}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-796)-4\sqrt{39599}}{2*8}=\frac{796-4\sqrt{39599}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-796)+4\sqrt{39599}}{2*8}=\frac{796+4\sqrt{39599}}{16} $
| 18x=-2x-40 | | 2×+2x=40 | | 10x+14=-2x+3 | | 30=2^t | | 1/2x-16=2x+4 | | x+6+x=40 | | 7+1/4r=-18 | | x+4(x-6)+x-6=150 | | s(s^2+4s+13)=0 | | s(s^2+4s+13=0 | | 6-n+4=28 | | (x-6)+4x+x=150 | | (x-6)+4x=x=150 | | S=-5t^2+80t | | 3w-8=4w-14 | | 9/7=7/3z-12/7 | | 120+x(30)=500 | | 1/5+2/5=3/4x-1/4x | | x5+x8=2x5+x8=2 | | 1/5+2/5=(3/4)/x-(1/4)/x | | 0.15*100=x | | 0.15.100=x | | 4/5x-9=-1/3 | | 3 | | 393=15+7d/12 | | -14=8y+y+22 | | k-10/5=-9/3 | | 43x=1978 | | 24=2a-5a+12 | | 2(3t+9)=5*30 | | x/2(x+3)+9-5=32 | | 5k-2=(3-k) |