2x+(3/4x)+3=300

Simple and best practice solution for 2x+(3/4x)+3=300 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x+(3/4x)+3=300 equation:



2x+(3/4x)+3=300
We move all terms to the left:
2x+(3/4x)+3-(300)=0
Domain of the equation: 4x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
2x+(+3/4x)+3-300=0
We add all the numbers together, and all the variables
2x+(+3/4x)-297=0
We get rid of parentheses
2x+3/4x-297=0
We multiply all the terms by the denominator
2x*4x-297*4x+3=0
Wy multiply elements
8x^2-1188x+3=0
a = 8; b = -1188; c = +3;
Δ = b2-4ac
Δ = -11882-4·8·3
Δ = 1411248
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1411248}=\sqrt{16*88203}=\sqrt{16}*\sqrt{88203}=4\sqrt{88203}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1188)-4\sqrt{88203}}{2*8}=\frac{1188-4\sqrt{88203}}{16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1188)+4\sqrt{88203}}{2*8}=\frac{1188+4\sqrt{88203}}{16} $

See similar equations:

| 3z+6-6=5z+20 | | x+(1/4x)+3=300 | | x+x+(1/2x)+(1/4x)+3=300 | | ½(4x)=2(x+4) | | -8r-5=r+2-8r | | x+(x/4)+3=300 | | C=-11y+118 | | 10x=400(100) | | 2x+(x/2)+(x/4)+3=300 | | 1+7p=-7+3p | | x+x+(x/2)+(x/4)+3=300 | | ,0.16(7x-0.8)=1.2x+7 | | 1/3n+55=639 | | 3x+4+5x=50-2x-6 | | 3/4x+1=19/30+5/3x | | 7x+3-4x=25+2 | | 3x2-(1÷3)=0 | | b/4+6=3 | | (x+5)/5=60 | | 21x2-38x+5=0 | | 6x+5+2x=31+8 | | 2x2-13x+20=0 | | -8-m+4m=m-6 | | 5x2-2000=0 | | -4+7x=5x+4 | | X+1/2y=2 | | 18d-21=15d+8 | | 2x2+9x-18x=0 | | 28+8n=4(n+7) | | -4y+y-1=-23 | | (x+5)/2=34 | | 4x-(6x2-x-15)=49-(6x2-13x+2) |

Equations solver categories