If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-13x+20=0
a = 2; b = -13; c = +20;
Δ = b2-4ac
Δ = -132-4·2·20
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-3}{2*2}=\frac{10}{4} =2+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+3}{2*2}=\frac{16}{4} =4 $
| -8-m+4m=m-6 | | 5x2-2000=0 | | -4+7x=5x+4 | | X+1/2y=2 | | 18d-21=15d+8 | | 2x2+9x-18x=0 | | 28+8n=4(n+7) | | -4y+y-1=-23 | | (x+5)/2=34 | | 4x-(6x2-x-15)=49-(6x2-13x+2) | | 3/5k=3/8 | | 10-2y=7 | | 2x-3x-12=1x12 | | j+(-61)=29 | | (3x+10)^2=3(x+10) | | X=1/10y+2=-16 | | 3/6=q+2/3 | | 26+2×3x+11=-18 | | m/3+2=0 | | (4x-10)-62=180 | | -n+2=7 | | 23+x+79=180 | | 3(5)=1/2(6x | | 3k+4=130 | | 35+7m=21 | | 75+69+7x+5=180 | | {x}{4}-10=-6 | | 10x+3=7x+10 | | 4/x=x^2+3x | | 6-8x=30= | | -18=9x-8 | | 14.32n-15=41.92 |