2x(x-3)+(x-6)*(2x+8)=0

Simple and best practice solution for 2x(x-3)+(x-6)*(2x+8)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x(x-3)+(x-6)*(2x+8)=0 equation:



2x(x-3)+(x-6)(2x+8)=0
We multiply parentheses
2x^2-6x+(x-6)(2x+8)=0
We multiply parentheses ..
2x^2+(+2x^2+8x-12x-48)-6x=0
We get rid of parentheses
2x^2+2x^2+8x-12x-6x-48=0
We add all the numbers together, and all the variables
4x^2-10x-48=0
a = 4; b = -10; c = -48;
Δ = b2-4ac
Δ = -102-4·4·(-48)
Δ = 868
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{868}=\sqrt{4*217}=\sqrt{4}*\sqrt{217}=2\sqrt{217}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{217}}{2*4}=\frac{10-2\sqrt{217}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{217}}{2*4}=\frac{10+2\sqrt{217}}{8} $

See similar equations:

| 4x^2-10x+48=0 | | t²-8t+12=0 | | 1029=16t2 | | M+n=11 | | (d+1)^2(D^4-16)=0 | | 1029=16t^2 | | 1042=16t^2 | | 820=16t^2 | | 27n+3=111 | | x(3x-7)(-2+4)=0 | | 3(x)+20=10(x)-15 | | 4n-4=31 | | X3*(2x+8)=0 | | 2Z+5 | | 2Z+5 | | 62x+2=18 | | 2x+3x+5x=1000 | | 0.35x+0.10(100-x)=18 | | -7=6(4i-5)-1 | | 0.20x+15=25 | | 4x^2+6=246 | | 0.35x+(100-x)=25 | | 9x=12/7 | | h+4/24=6/h+4 | | 2x+2=58,7x+7=63 | | 44(3x-3)=24(5x) | | n-30=65 | | 7t-7t+2t=12 | | 0.35x+0.15(100-x)=25 | | 3(v-2)-2v=0.2021 | | 1,5m-2=0,5m-7 | | (k+(1)/(2))^(2)=(9)/(16) |

Equations solver categories