If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x(x-10)=20
We move all terms to the left:
2x(x-10)-(20)=0
We multiply parentheses
2x^2-20x-20=0
a = 2; b = -20; c = -20;
Δ = b2-4ac
Δ = -202-4·2·(-20)
Δ = 560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{560}=\sqrt{16*35}=\sqrt{16}*\sqrt{35}=4\sqrt{35}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{35}}{2*2}=\frac{20-4\sqrt{35}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{35}}{2*2}=\frac{20+4\sqrt{35}}{4} $
| 5(s-70)+3=93 | | 30=-5(n-91) | | 5(s−70)+3=93 | | 23-3r=17 | | -3(v-38)=-87 | | 4x+6x-3=2(5x+3) | | 50=5(n-81) | | 8+4x=2(2x+16) | | y-4.1=3 | | 18−3v=12 | | -18.46+11.1=18.5u+13.74-2.8u | | 3x-13=2(2x-3) | | -5(8x+18)=-410 | | (x+4)^2=102 | | x–8=4x–13 | | -11x+15x=-32 | | 10(z+3)=4(2z+9)4z | | 3(3x-3)-4x+3=33 | | x–16=-3x–14 | | 2a^2=4a^2= | | 8(9x-8)=-8(3x-8) | | 9+7p=2p-6 | | 3x+4(4x-2)=-46 | | 3(x+15)-2(-x+10)=-15 | | 4(x+30)+2(x+18)=-6 | | -18.46+11.1u=18.5u+13.74−2.8u | | 9(x-20)=5(x+4) | | -6(10+4x)=-180 | | 6x-17=17x-14 | | -6q+17-13=-5q-14 | | -5n-9=-24 | | 3/6=n/8 |