10(z+3)=4(2z+9)4z

Simple and best practice solution for 10(z+3)=4(2z+9)4z equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10(z+3)=4(2z+9)4z equation:



10(z+3)=4(2z+9)4z
We move all terms to the left:
10(z+3)-(4(2z+9)4z)=0
We multiply parentheses
10z-(4(2z+9)4z)+30=0
We calculate terms in parentheses: -(4(2z+9)4z), so:
4(2z+9)4z
We multiply parentheses
32z^2+144z
Back to the equation:
-(32z^2+144z)
We get rid of parentheses
-32z^2+10z-144z+30=0
We add all the numbers together, and all the variables
-32z^2-134z+30=0
a = -32; b = -134; c = +30;
Δ = b2-4ac
Δ = -1342-4·(-32)·30
Δ = 21796
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{21796}=\sqrt{4*5449}=\sqrt{4}*\sqrt{5449}=2\sqrt{5449}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-134)-2\sqrt{5449}}{2*-32}=\frac{134-2\sqrt{5449}}{-64} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-134)+2\sqrt{5449}}{2*-32}=\frac{134+2\sqrt{5449}}{-64} $

See similar equations:

| 3(3x-3)-4x+3=33 | | x–16=-3x–14 | | 2a^2=4a^2= | | 8(9x-8)=-8(3x-8) | | 9+7p=2p-6 | | 3x+4(4x-2)=-46 | | 3(x+15)-2(-x+10)=-15 | | 4(x+30)+2(x+18)=-6 | | -18.46+11.1u=18.5u+13.74−2.8u | | 9(x-20)=5(x+4) | | -6(10+4x)=-180 | | 6x-17=17x-14 | | -6q+17-13=-5q-14 | | -5n-9=-24 | | 3/6=n/8 | | 4(x-15)=x-12 | | 1/2(2x+2)=-2x+10 | | -10+3y=-1 | | -12v+18=-12-15v | | -23x+2-2x+4=40 | | 6(1+4x)=78 | | 2+10x=-138 | | -3x^2+27x^2+1200=0 | | 4(x-5)=-2(x-28) | | 1-2x=5x-55 | | 5x-7=-7+x | | 3x²+13x+12=0 | | 7x-2=6x-14 | | 3v+18=-12 | | 5+4x=2x+1 | | 4*(x+7)=38 | | -26+2c=74 |

Equations solver categories