2x(x+4)=2(-8-x)-2x

Simple and best practice solution for 2x(x+4)=2(-8-x)-2x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x(x+4)=2(-8-x)-2x equation:



2x(x+4)=2(-8-x)-2x
We move all terms to the left:
2x(x+4)-(2(-8-x)-2x)=0
We add all the numbers together, and all the variables
2x(x+4)-(2(-1x-8)-2x)=0
We multiply parentheses
2x^2+8x-(2(-1x-8)-2x)=0
We calculate terms in parentheses: -(2(-1x-8)-2x), so:
2(-1x-8)-2x
We add all the numbers together, and all the variables
-2x+2(-1x-8)
We multiply parentheses
-2x-2x-16
We add all the numbers together, and all the variables
-4x-16
Back to the equation:
-(-4x-16)
We get rid of parentheses
2x^2+8x+4x+16=0
We add all the numbers together, and all the variables
2x^2+12x+16=0
a = 2; b = 12; c = +16;
Δ = b2-4ac
Δ = 122-4·2·16
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4}{2*2}=\frac{-16}{4} =-4 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4}{2*2}=\frac{-8}{4} =-2 $

See similar equations:

| W2+4w-32=0 | | 8h=6h–14 | | 3b-(-9b)= | | 12=6+3v | | 4n—6=10n | | 4(-3-3y)=-5(y+8) | | 3b-(-6b)= | | x+-0.4x=0 | | 2x-1.5x=8 | | 8x+6/4=15.5 | | 4(-3-6y)=-5(y+8) | | 2x-4/2=11 | | 5x-(2×+6)=15 | | 0.3x+0.005069x^2=127.008 | | -3.9x-0.8x-2=-4.7x-0.7 | | 0=-2(x+6)=1 | | 11+d+10=6d | | 3(-3)-7y=17 | | 10u+5u= | | 2y^2-13y=-20 | | 10u+-5u= | | 50x+200=65x | | 45-2.50x=11 | | X2-10x-75=0 | | -387=2x+5(-6x-44) | | 6(2-2x)=5(5x-2) | | 2h=5h-5 | | -15u+5u= | | y+3*(-2)=5 | | 3(x-4)+5=2(x-1) | | 5/8x=-12 | | 2÷3x+15=17 |

Equations solver categories