2x(x+1)=2x+1

Simple and best practice solution for 2x(x+1)=2x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x(x+1)=2x+1 equation:



2x(x+1)=2x+1
We move all terms to the left:
2x(x+1)-(2x+1)=0
We multiply parentheses
2x^2+2x-(2x+1)=0
We get rid of parentheses
2x^2+2x-2x-1=0
We add all the numbers together, and all the variables
2x^2-1=0
a = 2; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·2·(-1)
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2}}{2*2}=\frac{0-2\sqrt{2}}{4} =-\frac{2\sqrt{2}}{4} =-\frac{\sqrt{2}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2}}{2*2}=\frac{0+2\sqrt{2}}{4} =\frac{2\sqrt{2}}{4} =\frac{\sqrt{2}}{2} $

See similar equations:

| -3c-16=-12-2c | | c-23=2 | | 4x²=16x | | 27=7+u^2 | | 3(4r-5)-9=6(2r-3)-6 | | 12=z/5+7 | | 27=u^2+7 | | 4t+9=8t-1 | | 3+13t=15+16t | | (2x-9)=92 | | 1.47x+64.32=1.72x+60.57 | | +8=5x | | 4x−30=4x−14 | | 8.27+11.6y=10.8y-14.49+6.84 | | 4.9x^2=13.5x | | (4x−30)=(4x−14) | | 5(12-3p)=15p+90 | | (y–4)/2=10 | | 9f+9=-7f-12+13f | | x+10+54=6x+4 | | 2(3y-5)=6y-10 | | 3k^2-4k+15=0 | | 9=p6 | | 3(3x-2)=3(2x-3) | | 13w+10+9w=-18+20w | | -1-5h=-13-4h | | -9=1/4x-6-1/8x | | 67=f+2 | | -4+6v-8v=-3v+6 | | 7(2b-1)-3=6+6b | | -1-(9-2x)=10 | | 16–12a=20+6a |

Equations solver categories