If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x(8-3x)-(2-7x)=12-(5-2x)
We move all terms to the left:
2x(8-3x)-(2-7x)-(12-(5-2x))=0
We add all the numbers together, and all the variables
2x(-3x+8)-(-7x+2)-(12-(-2x+5))=0
We multiply parentheses
-6x^2+16x-(-7x+2)-(12-(-2x+5))=0
We get rid of parentheses
-6x^2+16x+7x-(12-(-2x+5))-2=0
We calculate terms in parentheses: -(12-(-2x+5)), so:We add all the numbers together, and all the variables
12-(-2x+5)
determiningTheFunctionDomain -(-2x+5)+12
We get rid of parentheses
2x-5+12
We add all the numbers together, and all the variables
2x+7
Back to the equation:
-(2x+7)
-6x^2+23x-(2x+7)-2=0
We get rid of parentheses
-6x^2+23x-2x-7-2=0
We add all the numbers together, and all the variables
-6x^2+21x-9=0
a = -6; b = 21; c = -9;
Δ = b2-4ac
Δ = 212-4·(-6)·(-9)
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-15}{2*-6}=\frac{-36}{-12} =+3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+15}{2*-6}=\frac{-6}{-12} =1/2 $
| P(x)=-1x^2+4x-10 | | (x)=4x^2+3 | | b/2+4b=4 | | 2/3+3x=-33 | | 65536=2^x | | x–8=37 | | 7t-9=26 | | 5^x-(5)^(3-x)=20 | | 3(x+2)=13+4(x-2) | | 5^x-(5)^3-x=20 | | (20x-10)+(20x-10)+(9x+4)=180 | | x+12=4+3x | | 9x-2=7x-2 | | 2x+32=9 | | 2b/5=-18 | | -2=w/2-6 | | 9=7x+6-2x | | 11x+7x=5-3 | | 0,2x-1,7=0,7(x+4) | | 11x+7x=3-5 | | 6=2⋅x+3 | | -5a+6=51 | | x2-6x-280=0 | | 3(4x-2)=x+60 | | –3*(1–3b)–12=12 | | 6x-3x=16+5 | | 9x+3/7+3x+8/2=10 | | 21x-11x+17=77 | | 7x-9/4+2x-7/6=-18 | | -7x+29=5x-13 | | -/2=y-1 | | 9/x+1=15/x+5 |