2x(4x+2)=4x-12(x-1)

Simple and best practice solution for 2x(4x+2)=4x-12(x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x(4x+2)=4x-12(x-1) equation:



2x(4x+2)=4x-12(x-1)
We move all terms to the left:
2x(4x+2)-(4x-12(x-1))=0
We multiply parentheses
8x^2+4x-(4x-12(x-1))=0
We calculate terms in parentheses: -(4x-12(x-1)), so:
4x-12(x-1)
We multiply parentheses
4x-12x+12
We add all the numbers together, and all the variables
-8x+12
Back to the equation:
-(-8x+12)
We get rid of parentheses
8x^2+4x+8x-12=0
We add all the numbers together, and all the variables
8x^2+12x-12=0
a = 8; b = 12; c = -12;
Δ = b2-4ac
Δ = 122-4·8·(-12)
Δ = 528
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{528}=\sqrt{16*33}=\sqrt{16}*\sqrt{33}=4\sqrt{33}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{33}}{2*8}=\frac{-12-4\sqrt{33}}{16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{33}}{2*8}=\frac{-12+4\sqrt{33}}{16} $

See similar equations:

| n-2+16=36 | | 3x-18+2x-4=4x+8 | | 4x+21+10x+5=180 | | x-3/4=2x-1/2 | | -2z+9=-3z | | 4x+21=10x+5 | | 65+.60x=0+.80x | | 18-4.8c=8.6-18 | | 2n+16=36 | | 8(2+2x)=-8 | | 3/4-2x=x-1/2 | | (3x+5)=360 | | 4/3+6y=5/2y | | 1+5x=7x+1-2x | | 3a+5a=6a+12 | | (3x+5)-2x=360 | | G=2x+1 | | 54-8x=-2x | | (3x+5)+2x=360 | | 48+.99(n-1)=0+1.29(n-1) | | -5x+10=-98+4x | | 3x+15=13=3(x+5) | | 6(x-1)/2=(3x+4)/6 | | (3x+5)2x=360 | | Y+1.5y=5 | | 8n-6=19n+11 | | (3x+5)=2x-360 | | (3x+5)=2x+360 | | 450+225m=2700 | | 2x(x)=128 | | 2(x-4)-7x=27 | | -65=13y |

Equations solver categories