2x(3x-35)+120(34x-21)=23+45x

Simple and best practice solution for 2x(3x-35)+120(34x-21)=23+45x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x(3x-35)+120(34x-21)=23+45x equation:


Simplifying
2x(3x + -35) + 120(34x + -21) = 23 + 45x

Reorder the terms:
2x(-35 + 3x) + 120(34x + -21) = 23 + 45x
(-35 * 2x + 3x * 2x) + 120(34x + -21) = 23 + 45x
(-70x + 6x2) + 120(34x + -21) = 23 + 45x

Reorder the terms:
-70x + 6x2 + 120(-21 + 34x) = 23 + 45x
-70x + 6x2 + (-21 * 120 + 34x * 120) = 23 + 45x
-70x + 6x2 + (-2520 + 4080x) = 23 + 45x

Reorder the terms:
-2520 + -70x + 4080x + 6x2 = 23 + 45x

Combine like terms: -70x + 4080x = 4010x
-2520 + 4010x + 6x2 = 23 + 45x

Solving
-2520 + 4010x + 6x2 = 23 + 45x

Solving for variable 'x'.

Reorder the terms:
-2520 + -23 + 4010x + -45x + 6x2 = 23 + 45x + -23 + -45x

Combine like terms: -2520 + -23 = -2543
-2543 + 4010x + -45x + 6x2 = 23 + 45x + -23 + -45x

Combine like terms: 4010x + -45x = 3965x
-2543 + 3965x + 6x2 = 23 + 45x + -23 + -45x

Reorder the terms:
-2543 + 3965x + 6x2 = 23 + -23 + 45x + -45x

Combine like terms: 23 + -23 = 0
-2543 + 3965x + 6x2 = 0 + 45x + -45x
-2543 + 3965x + 6x2 = 45x + -45x

Combine like terms: 45x + -45x = 0
-2543 + 3965x + 6x2 = 0

Begin completing the square.  Divide all terms by
6 the coefficient of the squared term: 

Divide each side by '6'.
-423.8333333 + 660.8333333x + x2 = 0

Move the constant term to the right:

Add '423.8333333' to each side of the equation.
-423.8333333 + 660.8333333x + 423.8333333 + x2 = 0 + 423.8333333

Reorder the terms:
-423.8333333 + 423.8333333 + 660.8333333x + x2 = 0 + 423.8333333

Combine like terms: -423.8333333 + 423.8333333 = 0.0000000
0.0000000 + 660.8333333x + x2 = 0 + 423.8333333
660.8333333x + x2 = 0 + 423.8333333

Combine like terms: 0 + 423.8333333 = 423.8333333
660.8333333x + x2 = 423.8333333

The x term is 660.8333333x.  Take half its coefficient (330.4166667).
Square it (109175.1736) and add it to both sides.

Add '109175.1736' to each side of the equation.
660.8333333x + 109175.1736 + x2 = 423.8333333 + 109175.1736

Reorder the terms:
109175.1736 + 660.8333333x + x2 = 423.8333333 + 109175.1736

Combine like terms: 423.8333333 + 109175.1736 = 109599.0069333
109175.1736 + 660.8333333x + x2 = 109599.0069333

Factor a perfect square on the left side:
(x + 330.4166667)(x + 330.4166667) = 109599.0069333

Calculate the square root of the right side: 331.057407308

Break this problem into two subproblems by setting 
(x + 330.4166667) equal to 331.057407308 and -331.057407308.

Subproblem 1

x + 330.4166667 = 331.057407308 Simplifying x + 330.4166667 = 331.057407308 Reorder the terms: 330.4166667 + x = 331.057407308 Solving 330.4166667 + x = 331.057407308 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-330.4166667' to each side of the equation. 330.4166667 + -330.4166667 + x = 331.057407308 + -330.4166667 Combine like terms: 330.4166667 + -330.4166667 = 0.0000000 0.0000000 + x = 331.057407308 + -330.4166667 x = 331.057407308 + -330.4166667 Combine like terms: 331.057407308 + -330.4166667 = 0.640740608 x = 0.640740608 Simplifying x = 0.640740608

Subproblem 2

x + 330.4166667 = -331.057407308 Simplifying x + 330.4166667 = -331.057407308 Reorder the terms: 330.4166667 + x = -331.057407308 Solving 330.4166667 + x = -331.057407308 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-330.4166667' to each side of the equation. 330.4166667 + -330.4166667 + x = -331.057407308 + -330.4166667 Combine like terms: 330.4166667 + -330.4166667 = 0.0000000 0.0000000 + x = -331.057407308 + -330.4166667 x = -331.057407308 + -330.4166667 Combine like terms: -331.057407308 + -330.4166667 = -661.474074008 x = -661.474074008 Simplifying x = -661.474074008

Solution

The solution to the problem is based on the solutions from the subproblems. x = {0.640740608, -661.474074008}

See similar equations:

| 15+x=4x+6 | | 48=6(10+n) | | -x+6=-2x+9 | | -8+2x=-24+6x | | 9z-15=21 | | -4+6x=12+2x | | x^2+4x=132 | | 18-27= | | 15-2x=4x-21 | | f(x)=x^3-3x^2-4x+12-2 | | 0.99*x=1.5*x | | x^3-3x^2-4x+12-2=0 | | 14+5h=20 | | 75*x=25*x | | x^3+7x^2-15x-9=0 | | 5x+3x-6=90 | | 75+15*x=0+25 | | 500=515+b(85-79) | | 20=I^2(5) | | 20=I^25 | | 1.33(-6y)= | | 4(n+7)-14n=148 | | 5x+6=2x+14 | | (x-yi)(3+2i)=12-5i | | (fg)(-12)=0 | | x^2+y^2=5(x-y) | | 6y+(5y+2)= | | 6y+30x=180 | | r^2-6r=187 | | -210=10(2p-3) | | (a-b)8= | | r^2-4r=192 |

Equations solver categories