If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x(3x+38)=0
We multiply parentheses
6x^2+76x=0
a = 6; b = 76; c = 0;
Δ = b2-4ac
Δ = 762-4·6·0
Δ = 5776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5776}=76$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(76)-76}{2*6}=\frac{-152}{12} =-12+2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(76)+76}{2*6}=\frac{0}{12} =0 $
| (7x-8)=180 | | 38-w=21 | | 4z/10-4=-5 | | 93-4x=23 | | 4=3n+23 | | 9y=4+7 | | x/7+7=1 | | 6(w-2)-4w=2(w-6) | | 8^-x+14=16^x | | 190-x=85 | | 6x-(4-x)2=32 | | 8^x=5764801 | | 6x-(4-x=32 | | (p+3)(5p=1)=0 | | x(x+2)/2=24 | | 3x=6x+90 | | 3=j/4-2 | | 1/3+a=5/4 | | 1/3+a=4/5 | | -7.9x=86.9. | | 8x+15+3=180 | | 11=3z=56 | | 3x+52=647 | | (X+2)(x-3)=150 | | (2x)(3x)(4x)=180 | | (x+10^-2)^20=0 | | (6n)^2+3=57 | | 2(2x+x)=210 | | 6(n+3)^2=57 | | 9x^2-54x+71=0 | | -76-x=-8x+50 | | 6(n^2+3)=57 |