If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x(2)+1x=180
We move all terms to the left:
2x(2)+1x-(180)=0
We add all the numbers together, and all the variables
2x^2+x-180=0
a = 2; b = 1; c = -180;
Δ = b2-4ac
Δ = 12-4·2·(-180)
Δ = 1441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{1441}}{2*2}=\frac{-1-\sqrt{1441}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{1441}}{2*2}=\frac{-1+\sqrt{1441}}{4} $
| 8c-30=-294 | | 180=117+3x | | (6x-5)/8=-4 | | 5(x+-4)=3x+2 | | -x=22+(-10x) | | -23j-7=-1088 | | X(x+3)=560 | | 6w^2-7w-20=0 | | (6x-5)/8=4 | | X2+12=8x | | -r+74=122 | | 180/x=400 | | 18d+6=-822 | | 420=x+3 | | 21 +52 s=s−43 | | -6/5k+9/25=-k^2 | | 2p-2=-3p | | -5p-5=-15 | | -5a-4=81 | | 6(2)-y=-23 | | 2(x-4)+16=-4x+16 | | -1/6d=-6 | | X+3-x=560 | | 3m2+6=-11m | | 3(x-5)+6=6x+7 | | -3b-4=-88 | | 3((5x-8/6)-7)-3=18 | | 9y=-18+-9(-2+-1/9(-18+-9y)) | | -32=y-12 | | -5d+5=235 | | -8=2x+2(5-10x) | | -5d+5=234 |