If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2t^2+5t-12=0
a = 2; b = 5; c = -12;
Δ = b2-4ac
Δ = 52-4·2·(-12)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-11}{2*2}=\frac{-16}{4} =-4 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+11}{2*2}=\frac{6}{4} =1+1/2 $
| 5x+21=7 | | 9x+1+3x=180 | | 6+5w=-26+5w | | -58+8x=5x+53 | | 12+6x=3x+6 | | 12-4x=-3x+8 | | 2x(x+4)-5=2x+3 | | 90-4p=8*6-6 | | x²+4=13 | | 3m+3=m-3+3m | | 2(4+3x)=6-(6x+1) | | -218+5x=14x+106 | | 4w+14=16 | | -110+15x=4x+88 | | 90-4p=8p-6 | | 4+2x=x+1-3 | | 3(y-4)=-9y+12 | | -110+15x=5x+88 | | 6/11x+3+3/11x+5=26 | | 2/3n+9=n-6 | | (8x-2)+(4x+1)=59 | | -164-5x=15x+156 | | -3n+2n=+8 | | 35y=20y | | -54+3x=12x+90 | | X+6+3x+3=-5x+36 | | 255+h=22H | | -3r+5r=-8+4r | | 83x+P=83x+QP=38Q=83 | | 6o=24 | | 83x+P=83x+QP=38Q=-38 | | 83x+P=83x+QP=83Q=-83 |