If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2p^2+10p+8=0
a = 2; b = 10; c = +8;
Δ = b2-4ac
Δ = 102-4·2·8
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-6}{2*2}=\frac{-16}{4} =-4 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+6}{2*2}=\frac{-4}{4} =-1 $
| 3y-1=4+2y | | 6m+6=7m+4 | | (x+8)(2x+1)/2=90 | | (2x-2)=5x+1075 | | 10(y+4)=5(3y-5) | | -2(4x-5)-3x=-23 | | 5x-36=9x+8 | | x^2-3x+720=0 | | 3x+46=11x-2 | | 6y+4y-12=0 | | -2(3-4x)=10 | | X^2(4-x)^2=12 | | 5x-11=41/4 | | -8+x=34 | | 90+(x+2)+(2x+3)=180 | | 25+x=48 | | x+10=53 | | 5(-3)+10y=5 | | 5m+12=-9m+16 | | 4x+5/2=11/3 | | 55x=40000 | | 5x+36=-2x+22 | | -8=2g | | r=3(5r) | | (4x-7)+(x+16)=112 | | 1y-4y=0 | | (4x-7)+(x+16)=180 | | (4x-7)+(x+16)+68=180 | | (5x-43)+(4x-11)=360 | | x*1.05=120 | | 36+3x=360 | | x*1.05=105 |