(x+8)(2x+1)/2=90

Simple and best practice solution for (x+8)(2x+1)/2=90 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+8)(2x+1)/2=90 equation:



(x+8)(2x+1)/2=90
We move all terms to the left:
(x+8)(2x+1)/2-(90)=0
We multiply parentheses ..
(+2x^2+x+16x+8)/2-90=0
We multiply all the terms by the denominator
(+2x^2+x+16x+8)-90*2=0
We add all the numbers together, and all the variables
(+2x^2+x+16x+8)-180=0
We get rid of parentheses
2x^2+x+16x+8-180=0
We add all the numbers together, and all the variables
2x^2+17x-172=0
a = 2; b = 17; c = -172;
Δ = b2-4ac
Δ = 172-4·2·(-172)
Δ = 1665
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1665}=\sqrt{9*185}=\sqrt{9}*\sqrt{185}=3\sqrt{185}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-3\sqrt{185}}{2*2}=\frac{-17-3\sqrt{185}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+3\sqrt{185}}{2*2}=\frac{-17+3\sqrt{185}}{4} $

See similar equations:

| (2x-2)=5x+1075 | | 10(y+4)=5(3y-5) | | -2(4x-5)-3x=-23 | | 5x-36=9x+8 | | x^2-3x+720=0 | | 3x+46=11x-2 | | 6y+4y-12=0 | | -2(3-4x)=10 | | X^2(4-x)^2=12 | | 5x-11=41/4 | | -8+x=34 | | 90+(x+2)+(2x+3)=180 | | 25+x=48 | | x+10=53 | | 5(-3)+10y=5 | | 5m+12=-9m+16 | | 4x+5/2=11/3 | | 55x=40000 | | 5x+36=-2x+22 | | -8=2g | | r=3(5r) | | (4x-7)+(x+16)=112 | | 1y-4y=0 | | (4x-7)+(x+16)=180 | | (4x-7)+(x+16)+68=180 | | (5x-43)+(4x-11)=360 | | x*1.05=120 | | 36+3x=360 | | x*1.05=105 | | x*0.05=105 | | Y=x-4/(-2.3) | | x/6+6.5=-3.1 |

Equations solver categories