If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2k^2+9k+10=0
a = 2; b = 9; c = +10;
Δ = b2-4ac
Δ = 92-4·2·10
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-1}{2*2}=\frac{-10}{4} =-2+1/2 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+1}{2*2}=\frac{-8}{4} =-2 $
| 13n=7n-8+7 | | 56y+23=400 | | y+8+4=60 | | X÷12=x+6/30 | | n+5-3n=2(n-3)-3(-3n-8) | | 8÷y+4=60 | | 23=13n | | x-4=12+x | | 1/8(w-7)=1 | | 48=48y | | R(x)=(320+20x)*(70-5x) | | 9(k-4)=13+2k | | 4x-1+x=9 | | -4k-6(k-8)=118 | | 15=10+20x | | 6(k-7)-1=5 | | 50=10+20x | | 20a-13=20+9a | | 42=7(x-3)+7(x-5) | | 3x+47+2x-30+x+62=180 | | 6(x+3)-2(1-4x)=44 | | 3(8-7n)+8=95 | | 6x+18-2+8x=44 | | 62x-2=1 | | 15-x=x+25 | | 2t/8=(t/8)-4 | | 2y/7-1/19=y/21-8/7 | | 5t+1=-94 | | .5(x+4)=-12 | | 13=7n-8+7 | | 1/2k=1/4k-1/2 | | 7r–8=20 |