If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2f(5f-2)-10(f-3f+6)=-8f(f+4)+4(2f-7f)
We move all terms to the left:
2f(5f-2)-10(f-3f+6)-(-8f(f+4)+4(2f-7f))=0
We add all the numbers together, and all the variables
2f(5f-2)-10(-2f+6)-(-8f(f+4)+4(-5f))=0
We multiply parentheses
10f^2-4f+20f-(-8f(f+4)+4(-5f))-60=0
We calculate terms in parentheses: -(-8f(f+4)+4(-5f)), so:We add all the numbers together, and all the variables
-8f(f+4)+4(-5f)
We multiply parentheses
-8f^2-32f-20f
We add all the numbers together, and all the variables
-8f^2-52f
Back to the equation:
-(-8f^2-52f)
10f^2-(-8f^2-52f)+16f-60=0
We get rid of parentheses
10f^2+8f^2+52f+16f-60=0
We add all the numbers together, and all the variables
18f^2+68f-60=0
a = 18; b = 68; c = -60;
Δ = b2-4ac
Δ = 682-4·18·(-60)
Δ = 8944
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8944}=\sqrt{16*559}=\sqrt{16}*\sqrt{559}=4\sqrt{559}$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(68)-4\sqrt{559}}{2*18}=\frac{-68-4\sqrt{559}}{36} $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(68)+4\sqrt{559}}{2*18}=\frac{-68+4\sqrt{559}}{36} $
| 6x+15x+33=180 | | 5x^2-x-120=0 | | -3x-43=15x+5-14x | | -4x+26=9x | | -2x+50=-5x-1 | | 8(x+3)=3x+12 | | 34=6+5x | | 2*(4y+3)-3=2-5*(1-y) | | (2x+12)=(8x-2) | | 4x+24x-3=7(4x+2) | | 4x+24x-3=7(4x+20 | | 2^2y-10y+4=0 | | 10/(20-x)=5/x | | 360-15x-33+6x=180 | | A+10+40=2a | | -5z+1/2=28 | | Y+4=-3/2x-3 | | (7w+4)/2=25-(2w-6)/3 | | 1+5y=13+3y | | 10a+3=2a+19 | | 15x+20=695 | | 4z/5=8 | | (3x+7)5/3=75 | | 12-5*(2x-1)=2x+5 | | x/4+11=13 | | 18-6y=9 | | 5+2*(2x-4)=3x+2 | | T(s)=2.25/s^2+5s+2.25 | | ((3*x-3)/4)-2=0 | | 3(x-2)+4=10+x | | 1.1x=9.3 | | x+0.06625x=100 |