If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2d^2=98
We move all terms to the left:
2d^2-(98)=0
a = 2; b = 0; c = -98;
Δ = b2-4ac
Δ = 02-4·2·(-98)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28}{2*2}=\frac{-28}{4} =-7 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28}{2*2}=\frac{28}{4} =7 $
| p=500+1.50 | | F(x)9(x)-2=1 | | 20−3.75x=3.25 | | (2)=-3x-6 | | 6.4-10=4.4n | | -17=1/5n=-20 | | v=5+19T | | -3(6v-1)+3v=3(v+6) | | -3=12/t | | 12=(512)a+4 | | -4(x+1)=-4x+4 | | j-741=-471 | | -0.5t=-12 | | 1=(t+13)/10+t | | 2(3x+3)-4(5x-3)=x(x-3)-x(x+5) | | -6x-3(6+5x)=108 | | 0.09(x+2000)=3,780 | | 17=2u-3 | | -5(6-6a)=-90 | | -18-36u=0 | | 11(4-6x)+5(13x+11)=9 | | 1/2x=600-x | | 6x-26=3+7 | | 80=-1-9x | | x–2=–11 | | -29=-7w+2(w+3) | | -1.5s=-3 | | 13t+2t-12t-t=8 | | 40x+⌈25-(3x+2x)⌉-10= | | 20-u=13 | | 3x3=80-2 | | -8(x-1)=-32 |