If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2=(x+25)(2x-30)
We move all terms to the left:
2-((x+25)(2x-30))=0
We multiply parentheses ..
-((+2x^2-30x+50x-750))+2=0
We calculate terms in parentheses: -((+2x^2-30x+50x-750)), so:We get rid of parentheses
(+2x^2-30x+50x-750)
We get rid of parentheses
2x^2-30x+50x-750
We add all the numbers together, and all the variables
2x^2+20x-750
Back to the equation:
-(2x^2+20x-750)
-2x^2-20x+750+2=0
We add all the numbers together, and all the variables
-2x^2-20x+752=0
a = -2; b = -20; c = +752;
Δ = b2-4ac
Δ = -202-4·(-2)·752
Δ = 6416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6416}=\sqrt{16*401}=\sqrt{16}*\sqrt{401}=4\sqrt{401}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{401}}{2*-2}=\frac{20-4\sqrt{401}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{401}}{2*-2}=\frac{20+4\sqrt{401}}{-4} $
| 15x+-10=-5x+30 | | x-1/5=1/9 | | 9+m=3m+1 | | -1d=24 | | 16+0.14x=22+0.09 | | 1/3x-1/6x=1/6 | | 8n−3=−11 | | 5x-105=115+15x | | (4x-6)(2x+3)=0 | | -2(x+1)=(x-4) | | 5(15-6y)+6y=3 | | 6(8s+7)=-23 | | 5m-78=-8 | | 3(x+4)=16x-x-14 | | (2x+18)^2=144 | | 8n −3=−11 | | –8h−10+6=10−10h | | 1c+12=4c | | −10=x/5 | | 100-x=83 | | 6+3(2x+1)=21 | | 6(x-6)+2x=-24+6x | | -3+1+5n=38 | | 7/p+9=21/36 | | (2x-3)=2(2x+3)=33 | | X=2(4+2x)+10 | | 2x+3(2x-6)=120 | | 1.25x+17=x-4 | | c/14=-7 | | 2+3x1=8 | | 2X+1=@x-1 | | 21=3x-3(6-2x) |