If it's not what You are looking for type in the equation solver your own equation and let us solve it.
29k^2+17k=0
a = 29; b = 17; c = 0;
Δ = b2-4ac
Δ = 172-4·29·0
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-17}{2*29}=\frac{-34}{58} =-17/29 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+17}{2*29}=\frac{0}{58} =0 $
| Y=144-3x | | 120x=820 | | 972=4/3(r*r*r) | | 14x-3=18x+2 | | 19x-3=16x+6 | | 14x+6=11x-8 | | 1/2a+2/(a-25)=0 | | 12+3x0=27 | | s^2-4s+8=0 | | x+26=-5 | | 6x=5(x+10)-2 | | 25x-5x=-19-x | | X+4=2x-20 | | 17-x=2x-3(x-4) | | 15-5=2x-x | | x+13=2(x+4)-x | | 19x+11=6x-15 | | -2.1x=63 | | 20*(1.05)x=50 | | 4x-32=-50+2x | | 16+2x=12-6x | | 22x-6=2x+14 | | 3/5x+1=1/2 | | 3a=2a+9 | | 12(v-6)=132 | | 12(v-6)=32 | | 0.75x-1850=0.65x | | 7(6-3x)+6(3+2x)=57 | | 7(6-3x)+6(3+2x=57 | | 11.3x-5.2=1.3x+7.4 | | 5(h+2)=(h-1) | | 6y-7=3y+10 |