29=(x-2)(x+6)

Simple and best practice solution for 29=(x-2)(x+6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 29=(x-2)(x+6) equation:



29=(x-2)(x+6)
We move all terms to the left:
29-((x-2)(x+6))=0
We multiply parentheses ..
-((+x^2+6x-2x-12))+29=0
We calculate terms in parentheses: -((+x^2+6x-2x-12)), so:
(+x^2+6x-2x-12)
We get rid of parentheses
x^2+6x-2x-12
We add all the numbers together, and all the variables
x^2+4x-12
Back to the equation:
-(x^2+4x-12)
We get rid of parentheses
-x^2-4x+12+29=0
We add all the numbers together, and all the variables
-1x^2-4x+41=0
a = -1; b = -4; c = +41;
Δ = b2-4ac
Δ = -42-4·(-1)·41
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-6\sqrt{5}}{2*-1}=\frac{4-6\sqrt{5}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+6\sqrt{5}}{2*-1}=\frac{4+6\sqrt{5}}{-2} $

See similar equations:

| 36=6(x+13) | | 87=-12+9b | | 10=16x^2+9.6 | | -11=-10r-1 | | .5385x=1 | | 82=-6+11d | | x=5/6-x+2/3=0 | | -3x+47=5x-45 | | 1/3x-5/6=3/4x | | 3(1+x)=-75 | | -46=9-5d | | 3x-4.5=9.5 | | 12(3x-1)=9(3x+1)+15 | | 0=-32x^2/2500+x+180 | | 4z^2-4z-12=0 | | 31=-9+5a | | 2c-3c=120 | | 4w=79. | | 7y-4y-12=25.29 | | 4x(x-3)=41 | | 3x-5)+70=180 | | f/3-5=20 | | 2y+y=16 | | -85=11+12m | | 5+2x3=x | | 12m^2-13m^2+3m=0 | | 8x+14=63 | | 6(x+6)=-18 | | 37=5/3x-19 | | 1.5(3-2x)=8.7-1.2(x-2.5 | | 22=-6y | | 2(2a-8)+6(a+7)=1 |

Equations solver categories