If it's not what You are looking for type in the equation solver your own equation and let us solve it.
28x^2+8x=0
a = 28; b = 8; c = 0;
Δ = b2-4ac
Δ = 82-4·28·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8}{2*28}=\frac{-16}{56} =-2/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8}{2*28}=\frac{0}{56} =0 $
| 30=8+2x,x=11, | | 3^{5x+8}=27^x | | Y=50x2^x | | 4^{x-6}-7=25 | | x²+47x=0 | | –5r−6=–9r+6 | | x/100=8/12.5 | | 9/24=z/40 | | 7×3^t=8 | | 5(3x-2)=10(x-3)+10x | | 0=-16x^2+121x+83 | | 20-x=6x3 | | 9/10=63/x | | 5(4x-3)=9(3x-4) | | x/(0.4-2x)=424264.068 | | 95=18y | | 12,600+3/4=x | | 55(3)+35y=200 | | 12,000+3/4=x | | 55(2.5)+35y=200 | | (2z-1)(z^2-2z+1)=(2z−1)(z2−2z+1)= | | 65.8=7(m+2.2) | | 1760=(x+30)16 | | 5q–2(q–2)=31 | | 1760=(x+30)17 | | 1/2x-6=56 | | x/2-4=-18 | | n/6=41 | | -5(-9+x)=104 | | x^{2}+4x-8=0 | | -4(7+x)=45 | | x+4.6=36.8 |